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ABSTRACT: Genetic design automation tools are necessary to
expand the scale and complexity of possible synthetic genetic
networks. These tools are enabled by abstraction of a hierarchy of
standardized components and devices. Abstracted elements must
be parametrized from data derived from relevant experiments, and
these experiments must be related to the part composition of the
abstract components. Here we present Logical Operators for
Integrated Cell Algorithms (LOICA), a Python package for
designing, modeling, and characterizing genetic networks based on
a simple object-oriented design abstraction. LOICA uses classes to
represent different biological and experimental components, which
generate models through their interactions. These models can be
parametrized by direct connection to data contained in Flapjack so that abstracted components of designs can characterize
themselves. Models can be simulated using continuous or stochastic methods and the data published and managed using Flapjack.
LOICA also outputs SBOL3 descriptions and generates graph representations of genetic network designs.
KEYWORDS: genetic network, genetic design automation, modeling, characterization, dynamical systems, design abstraction

■ INTRODUCTION
Synthetic biology is an interdisciplinary field that mixes life
sciences and engineering. From this perspective, living systems
are objects to engineer, and a rational way to design them is by
modifying their genetic code. This can be done by introducing
synthetic DNA that encodes a synthetic regulatory network,
also known as a genetic network or genetic circuit. The
design−build−test−learn (DBTL) cycle is central to engineer-
ing disciplines, and each phase requires appropriate tools,
standards, and workflows, which are still in development.
Synthetic Biology Open Language (SBOL) is an open standard
for the representation of in silico biological designs that covers
the DBTL cycle and has attracted a community of developers
that have produced an ecosystem of software tools.1−4

Modeling is key to the DBTL cycle and is essential to the
design and learn stages since a model states a well-defined
hypothesis about the system operation. Abstraction enables the
construction and analysis of models based on components,
devices, and systems that can be used to compose genetic
networks and derive their DNA sequences. It is the basis for
genetic design automation (GDA), which can accelerate and
automate the genetic network design process by compiling
models into DNA sequences. In order for GDA to proceed in a
rational way, the abstract elements of genetic networks must be
accessible to characterization, allowing parametrization of
models of their operation and interactions.

Functional abstraction of DNA sequences as parts such as
transcriptional promoters, ribosome binding sites (RBSs),
coding sequences (CDSs), terminators, and other elements has
enabled the assembly of relatively small genetic networks.5−7

However, for large-scale genetic network design, higher-level
abstractions are required, as provided by the logic formalism.8

In this approach, network compositions are abstracted into
genetic logic gates that transition between discrete low and
high steady-state gene expression levels according to input
signals, either external or internal to the network.9 These
genetic logic networks can be designed automatically using
Cello,8 in an analogous way to electronic circuits, on the basis
of the required discrete logical truth table, but this specification
requires knowledge of the domain-specific programming
language Verilog.10

Despite the discrete logical design formalism, these genetic
networks are dynamical systems and can have autonomous,
continuous, non-steady-state dynamics, displaying complex
and rich behaviors from bistability to oscillations and even
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chaos.4−6 Furthermore, typical operating conditions for
engineered networks such as colonies, bioreactors, and
microbiomes are time-varying, which can lead to complex
behaviors from even simple genetic networks.11

To design genetic networks, we therefore require kinetic
gene expression data generated at the test phase. These data
must be integrated with models to enable characterization of
abstracted parts, devices, and systems as well as metadata,
including the DNA part composition and sequence, to enable
automated design. Thus, there is a need for software design
tools that integrate abstract network designs, dynamical
models, kinetic gene expression data, DNA part composition,
and sequence via common exchange standards in a user-
friendly and accessible fashion.
Logical Operators for Integrated Cell Algorithms (LOICA)

is a tool for the design, modeling, and parametrization of
synthetic genetic networks. In contrast to existing genetic
network design and modeling tools,4 rather than composing

individual genetic parts, LOICA provides a high-level design
abstraction that simplifies the design process by representing
networks as combinations of components accessible to
parametrization. This parametrization of genetic network
models is enabled by direct connection to experimental data
via Flapjack, which also provides a platform for publishing and
sharing simulation results. Furthermore, while LOICA
abstracts genetic networks at a higher level, designs can be
represented using the latest SBOL3 standard. LOICA is a
Python package allowing programmatic design, simulation,
parametrization, and analysis of genetic networks. While
perhaps not as accessible as a graphical user interface, this
approach is more flexible, extensible, and amenable to
automation. It can be easily combined with the large ecosystem
of biological Python projects12−15 and uses simple program-
ming concepts that are commonly understood by researchers
from a range of disciplines.

Figure 1. Model generation in LOICA. (A) Diagram of an Assay encapsulating a Sample that in turn encapsulates Metabolism, Supplement, and
GeneticNetwork. In the latter, the Operator and Regulator interact to generate a model. On the right side the different interactions with the Flapjack
and SBOL models are shown. (B) General mathematical model of gene expression of the GeneProduct pOUT (Regulator or Reporter). In the
Operator, ϕ is a transfer function that maps the concentration of the the input r into the pOUT synthesis rate. In the GeneProduct, γ is the degradation
rate of pOUT. In Metabolism, μ(t) is the instantaneous growth rate that dilutes pOUT. (C) Transfer function of a one-input Operator, where α0 and α1
are the nonregulated and regulated synthesis rates, respectively, r is the input concentration, K is the switching concentration, and n is the
cooperativity degree. (D) SBOL diagram of a simple transcriptional unit that can instantiate a one-input Operator connected to an output
GeneProduct. (E) Transfer function of a two-input Operator, where α0, α1, α2, and α3 are the nonregulated, promoter 1 regulation, promoter 2
regulation, and joint regulation synthesis rates, respectively, r1 is the input concentration of Regulator 1, r2 is the input concentration of Regulator 2,
K1 is the switching concentration of promoter 1, K2 is the switching concentration of promoter 2, and n1 and n2 are the cooperativity degrees of the
Regulators with respect to the promoters. (E) SBOL diagram of a complex transcriptional unit that can instantiate a two-input Operator connected
to an output GeneProduct. SBOL diagrams were made using SBOLCanvas.2 The SynBioHub logo was adapted with permission from the
developers16 and shared under a BSD 2-Clause License. Copyright 2018 SynBioHub Developers. The Flapjack logo was adapted with permission
from the developers13 and shared under an MIT license. Copyright 2022 RudgeLab.
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■ RESULTS
LOICA provides a high-level genetic design abstraction using a
simple and flexible object-oriented programming approach in
Python. LOICA integrates models with experimental data via
two-way communication with Flapjack, a data management
and analysis tool for genetic network characterization.13

LOICA objects can be represented using SBOL3, enabling
direct translation to part composition and DNA sequence as
well as connection to repositories such as SynBioHub16 and

the ecosystem of SBOL tools.1−4 All of the code, examples, and
documentation are publicly available at https://github.com/
RudgeLab/LOICA.
Design Abstraction for Genetic Networks. The basic

objects in LOICA are Operator and GeneProduct, which may be
either a Regulator or Reporter (Figure 1A). A Regulator
generates a molecular species that regulates gene expression.
A Reporter generates a molecular species that provides a
measurable signal, such as a fluorescent protein. The Operator

Figure 2. Example of oscillator design, modeling, and analysis in LOICA. (A) Python code that generates an oscillator in LOICA. GeneticNetwork
construction is the first step, in which the user states all of the objects and their interactions. A graph representation of the model can be drawn in
one function call. (B) Next, during Assay setup, the user initializes and runs the simulation, and the results can be uploaded to Flapjack. The two-
way communication with Flapjack allows data storage and management, enables various analyses to be performed, and allows Operators to
characterize themselves. (C, D) Comparison of graphical representations for the generated network: (C) LOICA graph output of the oscillator
model and respective symbols, which demonstrates how easy it is to visualize generated networks using a higher level of abstraction; (D) SBOL
representation of the generated network. It can be seen that as more Operators are added, the complexity for visualizing the generated network
increases.
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maps one or more Regulator concentrations to one or more
GeneProduct synthesis rates. An Operator can be implemented
in DNA as a combination of promoters and their upstream
elements and downstream RBSs, and the GeneProduct can be a
combination of CDSs, possibly a Protein Stability Element
(PSE), and terminators. These objects can be represented by
SBOL Components containing features that describe individual
parts and their DNA sequences. The interactions between the
Operators and the Regulators encode models for genetic
network temporal dynamics, which can be simulated with
ordinary differential equations (ODEs) or the stochastic
simulation algorithm (SSA). The system of ODEs is thus:

t
t

p
r p p

d
d

( ) ( )=
(1)

r r( ) ( )
k

k=
(2)

where p = (p0, p1, ..., pN−1)T is the vector of GeneProducts,
which includes different Regulators (r = (r0, r1, ..., rM−1)T) and
Reporters (s = (s0, s1, ..., sN−M−1)T). The nonlinear operator Ψ
maps Regulator concentrations to GeneProduct synthesis rates.
Γ is a diagonal matrix of GeneProduct degradation rates γi, and
μ(t) is the instantaneous growth rate of the cells. Equation 1
shows the overall system, where Ψ encodes the whole network
and consists of a sum of individual LOICA Operators Φk (eq
2).
In the stochastic simulation approach, these Operators

encode the GeneProduct production reactions (* → pi) with
propensities ai given by the sum of Operator synthesis rates:

a r( )i
j

j=
(3)

where the sum is over all Operators that synthesize GeneProduct
i. The degradation rate γi and growth rate μ(t) determine the
propensities bi of the GeneProduct extinction reactions (pi →
*):

b t( ).i i= + (4)

To make this abstract framework more concrete, Figure
1C−F shows two Operators currently implemented in LOICA.
In the first, the output expression rate is a simple Hill function
of the input Regulator concentration (Figure 1C). Depending
on the parameters α0 and α1, this Operator may encode NOT
logic (α0 > α1) or a Buffer (α0 < α1). The Operator is the set of
genetic parts that regulate gene expression (Figure 1D). At its
core is a promoter containing repressor or activator binding
sites, such that the input Regulator either increases or decreases
transcription and thus the gene expression rate. The second
Operator is a two-input function (Figure 1E) that models two
promoters in tandem (Figure 1F). Depending on the
parameters α0, α1, α2, and α3, the Operator may encode a
range of logic, including the NOR operation for α0 > α1, α2, α3.
Operator instantiations may include terminators to isolate from
adjacent transcription, an UP element to insulate from
upstream DNA context, or an RBS and an insulator to ensure
independence of the promoter and RBS function (Figure 1F).
Logical Operators can thus be instantiated as genetic devices

that are regulated by input Regulators and output GeneProduct
synthesis rates. As well as the one-input and two-input
Operators described above, LOICA currently includes signal
Receivers and constitutive Sources. LOICA currently cannot

represent networks with nodes with more than two inputs, but
all Operators can drive multiple output GeneProducts. However,
it should be noted that LOICA can be used to define an
Operator as any operation that maps an input Regulator
concentration to an output synthesis rate, which may
correspond to different genetic implementations than those
described here. Thus, by expanding the range of Operator
classes, in the future LOICA could be extended to represent a
larger range of genetic networks.
Model Generation and Simulation. Oscillators offer a

useful dynamical system case study because they produce
continuous sustained oscillations that cannot be captured by
ON/OFF logic.5,7,17−19 We consider a genetic network based
on the topology of the mammalian oscillator developed by
Tigges et al.,18 consisting of positive and negative feedback
loops.
The design is made programmatically (Figure 2A, B) and

includes three Operators, a two-input Hill function Operator
(orange node in Figure 2C), which is both negatively and
positively regulated, and two one-input Hill function Operators
(blue nodes in Figure 2C), which are both activated by their
respective Regulators. Each Operator also outputs a fluorescent
protein Reporter (RFP, YFP, or CFP). The Reporters are linked
to the Flapjack Signal model and together with the Operators
and Regulators are incorporated into a GeneticNetwork, linked
to the Flapjack Vector, which with the Metabolism drives the
dynamics of the Sample (Figure 1A). The Sample belongs to an
Assay, and both are connected to their corresponding Flapjack
counterparts (Figure 1A). The code to create the GeneticNet-
work model is shown in Figure 2A, and the code to define a
context for modeling the genetic network is shown in Figure
2B. This approach is used to generate synthetic data using
either ODEs (Figure 3A) or the SSA20 (Figure 3B)�

contained in a LOICA Assay�from models that can be
uploaded to Flapjack. It is then easy to access Flapjack’s
genetic network characterization tools, data management, and
data visualization through its Python package (pyFlapjack) or
web interface (http://flapjack.rudge-lab.org).
Encoding Designs in SBOL3. GeneticNetwork has a

method to generate an SBOL document representation of
itself. GeneticNetwork maps to a Component that contains

Figure 3. Plots of simulated data using different models. (A) Plot of
simulated data from the previous network using the ODE model. (B)
Plot of simulated data from the same network using the SSA model.
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representations of Operators and GeneProducts and their
interactions. The combination of an Operator and its
GeneProducts is represented by SubComponents of a tran-
scriptional unit Component of type DNA with role Engineered
Region. Each GeneProduct has a genetic production Interaction
that generates a molecular species (protein or RNA). If the
molecular species is a Regulator, then it has an inhibition or
stimulation Interaction with one or more Operators. Whether it
is an inhibition or stimulation depends on the parameters of
the Operator. A Model is added to the SBOL document and
includes the source, language, and framework. To enable the
synthesis or assembly of the design, the Operator and
GeneProduct Components should include a Sequence.
Constraints are added to ensure correct part order.
LOICA can also generate graph representations of

GeneticNetworks, which can be used for further analysis of
their structure and for visual inspection (see Figure 2C). In
comparison with the SBOL Visual representation of the same
GeneticNetwork (Figure 2D), the LOICA representation
abstracts implementation details in favor of providing a
simplified design overview. Load and save functions also
provide a simple way to store and exchange high-level designs.
Operator Model Parametrization. A description of how

to use LOICA to generate and analyze simulated data from
models has been provided. However, another workflow
scenario goes from data to model parametrization. We
demonstrate this process for a two-input Operator using
simulated data (see the example notebook https://github.
com/RudgeLab/LOICA/blob/master/notebooks/Hill2.
ipynb)
In order to characterize the two-input Operator, three

auxiliary genetic networks are required. Each genetic network
needs a Reporter as a measurable output. In this example, we
used LOICA to generate simulated kinetic time-course data.
The outputs must be quantified with respect to model
parameters, and therefore, in an experimental setup the
measurements should be properly calibrated.21 Two genetic
networks composed of an input Supplement (e.g., an acyl-
homoserine lactone), a Receiver Operator, and a Reporter must
be characterized. The Receiver Operator transforms the input
Supplement concentrations into output expression rates of the
Reporter, modeled as a Hill function. Each of these genetic
networks was simulated over a range of input concentrations,
and the data were uploaded to Flapjack. This allowed
parametrization of the Receiver Operators by fitting of their
dynamic models to the simulated data.
Next, the two Receiver Operators were composed into a

genetic network to drive the Regulator inputs of the two-input
Operator, which in turn drives the output Reporter. This genetic
network was then simulated over a range of concentrations of
input signals, and the data were uploaded to Flapjack. The
two-input Operator model, combined with the parameters of
the two Receivers, was then fitted to the simulated data.
The Operator class provides a single function that performs

this parametrization process, connecting to Flapjack via
identifiers of the appropriate genetic networks, automatically
combining all of the available data.

■ DISCUSSION
The DBTL cycle is fundamental in synthetic biology, and thus,
various tools have been developed to optimize the different
stages. Within this cycle, modeling and characterization are
essential for the design and learn stages, for which we have

designed LOICA, a tool that connects these processes in an
automated fashion. LOICA integrates the design, modeling,
and characterization of genetic networks and their components
into Python workspaces, providing a powerful and easy-to-
understand high-level design abstraction for GDA that is
implemented using simple object-oriented programming
principles. Importantly, this programming interface does not
require specialist or domain-specific knowledge but instead
leverages common programming skills, making it accessible but
also providing customization capabilities for advanced users.
LOICA genetic network designs are composed of objects

that correspond to DNA sequences and are capable of
characterizing themselves via links to specific experimental
data in Flapjack.13 In this way, designs and their DNA
instantiations are associated with online repositories of
experimental data, which enable upload and sharing by
multiple users or laboratories. This allows division of labor
and reuse of experimental data that could be integrated into
the workflow of distributed biofoundries. GeneticNetworks can
automatically build SBOL3 representations of their structure
that encapsulate SBOL3 Components defining LOICA objects
and incorporating their part composition and DNA sequence.
As well as enabling GDA, this provides an easy way to
construct SBOL3 documents promoting the use of the
standard and providing the capacity to export SBOL3 files,
which then can be loaded to different SBOL-based tools. In
this way, LOICA not only links models to part composition
and DNA sequence, allowing automated assembly22 or
synthesis, but also connects designs to DNA provenance and
other metadata contained in repositories such as SynBioHub.16

Therefore, LOICA provides simple, easy-to-use, high-level
design abstraction for modeling and characterization of genetic
networks and their components, which connects to existing
synthetic biology standards, tools, and repositories of
experimental data to enable GDA. As with any abstraction,
simplification comes at the cost of some limitations, which will
be addressed in future revisions. The LOICA Operator−
Regulator abstraction assumes a one-step Regulator synthesis
model. If mRNA dynamics is important to network function,
this is clearly not appropriate. Furthermore, since Regulators
interact only with Operators, protein−protein or RNA−RNA
interactions are not possible. These limitations may be
overcome by implementing more complex models of Operators
that track the dynamics of internal events such as mRNA
production and input Regulator−Regulator interactions. Also,
all GeneProducts synthesized by an Operator are currently
assumed to be expressed at the same rate, which may be
overcome by specifying more complex Operator models.
Another issue is calibration of experimental measurement

data with respect to model parameters and the use of different
units. Following best practice, we propose the use of Molecules
of Equivalent Fluorescein (MEFL) as units for outputs using
GFP or its derivatives.21 However, since many datasets are not
calibrated, future versions of LOICA will incorporate explicit
specification of units, allowing for conversion of experimental
measurements to values directly comparable to model
simulations.
LOICA explicitly has the Metabolism as a model component

but currently includes limited interaction between this and the
GeneticNetwork. It has previously been shown that gene
expression is modulated by resource competition because of
metabolic limitations and in turn has an effect on metabolism,
including growth rates.23−26 These interactions are not
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currently included in LOICA models, but the necessary
interactions between classes are present, meaning that given
suitable models, the interactions between Metabolism and
GeneticNetwork and their components could be encoded in a
straightforward manner. Furthermore, the characterization
method implemented in LOICA assumes that genetic parts
are not affected by their compositional context. Various
methods have been developed to reduce such effects to a
minimum,27,28 but they cannot be discounted completely. It
may be appropriate to develop a constraint-based specification
of such interactions between specific parts, similar to the
approach of Cello.8

Future work also includes parametrization of stochastic
models,29 which will extend the existing characterization of
continuous models. A major improvement will be the
implementation of spatiotemporal dynamics of gene expression
in multicellular populations, including a connection to
CellModeller30 for individual-based modeling. SBOL integra-
tion will continue to be improved to leverage more features
and to allow model consistency checking based on known
interactions between Operators and Regulators, such that for
example a known repressor cannot be encoded in a model as
an activator. Ultimately, we aim to complete and automate the
DBTL cycle through an open-source workflow that incorpo-
rates LOICA, Flapjack,13 SynBioHub,16 and tools powered by
SBOL.1
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